CT-scan contouring technique (CoT): implication in cochlear implantation with straight electrode-arrays

Thi Hau Vu, Chiara Perazzini, Mathilde Puechmaille, Aurélie Bachy, Aurélien Mulliez, Louis Boyer, Thierry Mom & Jean Gabrillargues

Clermont - Ferrand

Outline

- Overview
- Aims and purposes
- Methodology (Image analysis)
- Results and Conclusion

Overview – why do it

- More than 45,000 CIs are sold worldwide each year
- The global CI market is likely to exceed USD 2 billion by the year 2020
- In modern cochlear implantation surgery, an important goal is preserving residual hearing and auditory structures
- There are large inter-individual variations in cochlear anatomy that determines the insertion depth.

Why do it?

- The rate of cochlear trauma appears to increase with insertion depth, the EA should preserve the residual hearing coding the regions of low frequency.
- Cross-sectional imaging plays an essential role in cochlea pre-implantation, to avoid cochlear trauma during operation.

How we do it

- Patients do temporal bone CT scans without ear malformation, neither anormal cochlear nor uninterpretable examinations.
- GE 750 HD 64 slices, 0,625mm slice thickness.
- The CT measurements were made on a workstation
- Two radiologists with 3 years and > 30-year
 experience reviewed the images

How we do it?

- The length of the cochlea is often **indirectly** estimated by the "distance *A*" using Escudé's method.
- With the current accuracy of CT-scans, we **directly** measured the cochlear size on CT-scans by contouring the external wall of the cochlea, mimicking the route of a straight EA of cochlear implant.

How to do?

Escudé's methods

 $L = 2.62A \times \log (1.0 + \Theta/235)$. With $\Theta = 360^\circ$, the formula gives: $L360^\circ = 2.434A$. With $\Theta = 540^\circ$, the formula gives: $L540^\circ = 3.126A$.

How do it

- 200 temporal bones were included in this retrospective study. Patients had average age 53.3 years (13–85 year old)
- First, in the 15 patients with cochlear implant, the CoT proved to give measurements highly accurate when compared with the real length of EA-insertion (R= 0.9744, p< 0.001).

• The distance *A* and *L*₃60° and *L*₅40° were significantly greater in men than in women

Table 2. Many standard deviation and some of managements by say

	Female $(n=64)$	Male $(n = 36)$
Diameter A (mm)	8.92 ± 0.38	9.16±0.42
	8.2-10.4	8–10
Measured $L_{360^{\circ}}$ (mm)	21.5 ± 0.87	22.0 ± 1.0
	19.7–24.7	18.8-24.1
Measured $L_{540^{\circ}}$ (mm)	25.7 ± 1.3	26.2 ± 1.5
	23-29.6	21.3-29.5

 There was no significant difference for any of the dimensions measured between the right and left sides

Table 3 Mean, standard deviation and range of measurements by side

	Right	Left
Diameter A	8.9 ± 0.41	9.0 ± 0.4
	8–10	8.2-10.4
Measured $L_{360^{\circ}}$ (mm)	21.7 ± 0.9	21.7 ± 0.9
	18.8-22.6	19.4-24.3
Measured L _{540°} (mm)	25.9 ± 1.4	25.9 ± 1.3
	21.3–29.6	23–29.3

- The intra-individual mean difference between Escudé's methods and contouring technique for *L*360° was 0.2±0.7 mm and ranged from −1.6 mm to +2.0 mm.
- Intra-individual difference of measurements between the two methods for $L540^{\circ}$, was on average 2.2 ± 1.2 mm and ranged from -1.3 mm to +5.6 mm.

Conclusion

- The CoT can predict with accuracy the length of EA-insertion depth, more precisely than estimation methods.
- The CoT provides highly reliable measurements of cochlear length.

Conclusion

• Should DO temporal bone CT scan and measure the length of cochlear by Contouring technique before cochlear implantation.

CT-scan contouring technique allows for direct and reliable measurements of the cochlear duct length: implication in cochlear implantation with straight electrode-arrays

Thi Hau Vu, Chiara Perazzini, Mathilde Puechmaille, Aurélie Bachy, Aurélien Mulliez, Louis Boyer, Thierry Mom & Jean Gabrillargues

European Archives of Oto-Rhino-Laryngology and Head & Neck

ISSN 0937-4477

Eur Arch Otorhinolaryngol DOI 10.1007/s00405-019-05432-6

