002b 01'41" 178 02'11"

OTOSCLEROSIS: HEARING AND/OR SURGERY?

B. FRAYSSE

LIMA November 14-17, 2018

GOAL OF THE PRESENTATION

To discuss the various factors which may influence the decision in councelling patient between:

Hearing aid

Stapes surgery

Auditory implant

CONDUCTIVE HEARING LOSS DEGREE OF STAPES FIXATION

SENSORINEURAL HEARING LOSS DEGREE OF HYALINIZATION

Pure cochlear otosclerosis

1%

No stapes fixation, pure cochlear otosclerosis

DIAGNOSIS

- Progessive hearing loss
- Family history of otosclerosis
- Good understanding in noise
- Speaks softly
- Normal otoscopy

Signe de Schwarts

TUNING FORK TEST

■ Weber: 256, 512, 1024, 2048 Hz compare the findings of the tuning fork with those found on pure tone

■ Rinne Test negative indicates an air bone gap of at least 30 to 45 dB

PURE TONE AUDIOMETRY

Arch. Otollaryngol. 1950; 51 (6): 798-808

The clinical application of bone conduction audiometry Raymond CARHART, Ph. D.

Frequency	250	500	1 000	2 000	3 000	4 000
Correction	0	5	10	13	10	6

SPEECH DISCRIMINATION

Speech discrimination in quiet and in noise

Normal tympanometry

Stapedial reflex absent or ON/OFF

DO WE NEED A CT-SCAN IN THE DIAGNOSIS OF OTOSCLEROSIS?

Otology & Neurotology
34:e55-e60 © 2013, Otology & Neurotology, Inc.

The Role of Imaging in the Diagnosis and Management of Otosclerosis

*Jagdeep Singh Virk, *Arvind Singh, and †Ravi Kumar Lingam

*ENT Department, and †Radiology Department, Northwick Park Hospital, North West London NHS Trust. Harrow, U.K.

Otology & Neurotology 37:9-15 © 2015, Otology & Neurotology, Inc.

A Systematic Review of the Diagnostic Value of CT Imaging in Diagnosing Otosclerosis

*†Inge Wegner, *Anne M. A. van Waes, *†Arnold J. Bittermann, *Sophie H. Buitinck, *Caroline F. Dekker, *Sophie A. Kurk, *Matea Rados, and *†Wilko Grolman

*Department of Otorhinolaryngology—Head and Neck Surgery; and †Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands

GUIDELINES OF THE FRENCH SOCIETIES

- « Recommandations pour la pratique de l'imagerie de l'oreille et du rocher »
- These guidelines relate
 - The technique of acquisition
 - The normal anatomy
 - The morphological modification
 - The classification of lesions

TECHNIQUE OF ACQUISITION

- Slice thickness 0.3/0.6 mm
- Parallel to the lateral canal
- Axial and coronal reconstruction
- With magnification

CLASSIFICATION

INTEREST OF IMAGING IN THE EVALUATION OF OTOSCLEROSIS

- To define a surgical strategy in case of
 - Anatomical difficulties
 - Negative CT-Scan
- 2 To anticipate the evolution of post operative bone conduction according to the extension and location of lesions
- **3** To analyse the cause of failure

ANATOMICAL DIFFICULTIES

Obliteration footplate

Facial déhiscence

Small fenestra

FACIAL NERVE / OVAL WINDOW

Total obliteration

FACIAL NERVE

ANATOMICAL DIFFICULTIES

Malleus fixation

Incus fixation

Stapedial artery

COUNSELING PATIENTS IN CASE OF NEGATIVE CT-SCAN

Middle ear exploration BUT

- → Risk of mobile footplate x 5
 - Early form with an incomplete fixation of the stapes
- → Possible inner ear conductive hearing loss due to:
 - An enlarged vestibular aqueduct
 - Minor inner ear malformation
 - Superior semicircular canal dehiscence
 - Modiolus anomalies

POSSIBLE INNER EAR CONDUCTIVE HEARING LOSS

▲ Superior semicircular ▲ canal dehiscence

▲ Enlarged ▲ vestibular aqueduct

▲ Abnormal modiolus ▲

MODIOLUS MALFORMATION

INTEREST OF IMAGING IN THE EVALUATION OF OTOSCLEROSIS

- To define a surgical strategy in case of
 - Anatomical difficulties
 - Negative CT-Scan
- 2 To anticipate the evolution of post operative bone conduction according to the extension and location of lesions
- **3** To analyse the cause of failure

EXTENSION AND LOCATION OF LESIONS

Marx M., Lagleyre S., Escudé B., Demeslay J., Elhadi T., Deguine O., Fraysse B.

Correlations between CT-Scan findings thresholds in otosclerosis

Acta Otolaryngol 2011;131:351-57

Group 1

Isolated fenestral otosclerosis
 foci restricted to the oval window

Group 2

- Extensive otosclerosis
 - Endosteal extension
 - Round window obliteration
 - ►IAC involvement

ENDOSTEAL EXTENSION AND POSTOPERATIVE BONE CONDUCTION

Improvement > 10 dB of BC was considered significant

	Group 1	Group 2	
	Without Endosteal	With Endosteal	
	n 150	n 33	
% of ears with more than 10 dB improvement	30/150 20%	1/35 3%	
	p < 0.05		

The chance of improvement was lower in extensive foci than in isolated otosclerosis

INTEREST OF IMAGING IN THE EVALUATION OF OTOSCLEROSIS

- To define a surgical strategy in case of
 - Anatomical difficulties
 - Negative CT-Scan
- 2 To anticipate the evolution of post operative bone conduction according to the extension and location of lesions
- **8** To analyse the cause of failure

CAUSE OF FAILURE

- Persistence of conductive hearing loss
- Secondary conductive hearing loss
- Sensorineural complications

PERSISTENCE OF A CONDUCTIVE HEARING LOSS

Prosthesis in place, no focus

Dysjonction

Malleus fixation

SECONDARY CONDUCTIVE HEARING LOSS

- Prosthesis displacement
- Lateralization syndrome

Reossification

LATERALIZATION SYNDROME

Otol Neurotol. 2009 Dec; 30(8):1138-44.

Revision stapes surgery: the "lateralized piston syndrome" LAGLEYRE S, CALMELS MN, ESCUDE B, DEGUINE O, FRAYSSE B.

SENSORINEURAL COMPLICATIONS

Intravestibular prosthesis

• Fistula with air

Labyrinthitis

FLOATTING STAPES

CONE BEAM COMPUTED TOMOGRAPHY APPLICATIONS IN OTOSCLEROSIS

- Cone Beam computed tomography is an X-Ray based volume acquisition method providing 3D images of the head
- The spatial and density resolution appears to be equivalent or better than a CT high resolution, with:
 - Lower radiation
 - Lower cost

CT-Scan

FOOTPLATE AND STAPES

CT-SCAN

CONE BEAM

	MSCT			CBCT			
Structure	Mean	Median	SD	Mean	Median	SD	р
Anterior footplate thickness	2.08	2.00	0.67	2.75	3.00	0.45	0.009
Posterior footplate thickness	1.91	2.00	0.70	2.73	3.00	0.65	0.009

THERAPEUTIC OPTION

- Medical treatment
- Hearing aid
- Surgery
- Auditory implants
 - → BAHA
 - → Middle ear implant
 - → DACS
 - Cochlear implant

MEDICAL TREATMENT

Otology & Neurotology 33:1308–1314 © 2012, Otology & Neurotology, Inc.

Third-Generation Bisphosphonates for Treatment of Sensorineural Hearing Loss in Otosclerosis

*†Alicia M. Quesnel, ‡Margaret Seton, *†Saumil N. Merchant, †§Christopher Halpin, and *†Michael J. McKenna

HEARING AID AMPLIFICATION IN CONDUCTIVE AND MIXED HEARING LOSS

- The adaptation is easiest due to the good cochlear function
- The hearing aid amplification should
 - Compensate the sensorineural part of the loss
 - Additional gain at each frequency to correct the conductive loss
 - Due to the conductive component on low frequency an occluded ear mold may be used

SURGICAL TECHNIQUE

LASER

Material

KTP LASER (532 nm)

Short or long angle

Vaporization of the stapedial crus: 1 W - 0,2 s

LENGTH OF THE PROSTHESIS AND COUPLING

Incorrect prosthesis sizing of and crimping of are important causes of stapedotomy failure

SELF CRIMPING PROSTHESIS

DECISION MAKING

- Clinical history and examination
- Audiometrical evaluation and binaural function
- Anticipation of surgical difficulties and surgeon experience

CLINICAL HISTORY AND EXAMINATION

- Main complain and level of disability
- Patient expectation

PORMS

J Am Acad Audiol 8: 27-43 (1997)

Client Oriented Scale of Improvement (COSI) and Its Relationship to Several Other Measures of Benefit and Satisfaction Provided by Hearing Aids

Harvey Dillon* Alison James† Jenny Ginis‡

- Risk and benefit between hearing aid and surgery
- Otoscopic examination

AUDIOMETRICAL EVALUATION

CT-SCAN EXAMINATION

CLINICAL SITUATION AND THERAPEUTIC OPTIONS

- 1 Hearing aid is the only option due to surgical contra indication
- 2 The two options are needed due to restaure binaural hearing
- 3 The two options are possible

The American Journal of Otology 19:544-545 © 1998, The American Journal of Otology, Inc.

> Is Stapedectomy Ever Ethical? Editorial Response

> > John J. Shea, Jr.

SURGICAL CONTRAINDICATIONS

Absolute

- Severe tubal dysfunction
- Pure sensorineural hearing loss
- Patient refuse any risk
- History of sudden hearing loss

Relative

Only hearing ear *

ONLY HEARING EAR IN THE ERA OF CI

Case 1

M – 49 years old

Case 2 • W – 55 years old

Case 3 • W – 65 years old

SPEECH DISCRIMINATION WITH POWERFULL HEARING AID

Powerfull hearing aid

9

No improvement with BAHA Cordelle

All 3 patients in a range of cochlear implant

In the range of cochlear implantation

SURGICAL DECISION

Second stage : Stapedotomy)

First stage: CI

SURGICAL RESULTS

Cochlear Implant

Fréquence [Hz]

Case 3

SPEECH DISCRIMINATION RESULTS

SYNTHESIS

- Patient choice was always to select the worse ear for CI first
- The improuvement of speech discrimination in noise was always significant in bimodal condition
- Quality of sound, music perception, melody recognition was better on the stapedotomy side

3 CLINICAL SITUATIONS

Hearing aid is the only option due to surgical contra indication

Varions options are needed due to restaure hearing

The two options are possible

VARIOUS OPTIONS ARE NEEDED TO RESTAURE HEARING

- Hearing aid + surgery to obtain binaural hearing
- Bone conduction, MEI
- CI in severe hearing loss

SURGERY + HEARING AID

- 59 years old woman
 - The optimal gain provide undesirable audiometric effects
 - It is not possible to provide enough gain to compensate

SURGERY + HEARING AID

BINAURAL HEARING IN OTOSCLEROSIS

Corrélation gain SSQ partie 1 / Gain dichotique

- Improvement of binaural effect in all cases event whithout a complete symetrical hearing
- Strong correlation between gain and quality of live (SSQ)

BONE CONDUCTION

- JA..., 25 yo, stapedotomy + hearing aid failure
 - ▶ No gain

POST OPERATIVE CT-SCAN

- Prothesis in place
- Obliteration of RW
- Option bone conduction

MEI CODACS VS CI

Hear Res 2016

Indication of direct acoustical cochlea stimulation in comparison to cochlear implants

Kludt E and al

Otol Neurotol, 2013

Multicenter study with a direct acoustic cochlear implant

Lenarz T

Speech in noise: Hochmair-Schulz-Moser (HSM) sentence test at +10 dB SNR

CI IN ADVANCED OTOSCLEROSIS

Audiological criteria

- ► All patients within the cochlear implant range (guideline HAS)
 - Pure tone average (PTA) > 85 dB
 - Word discrimination score (WDS) ≤ 50% at 60 dB

Imaging criteria

CT Scan evidence of otosclerosis focus

POPULATION

OVERALL RESULTS

N:22

PREDICTIVE FACTORS OF COCHLEAR IMPLANT OUTCOMES

Previous stapedotomy has No impact on Cochlear implant outcome

ALGORITHM FOR MANAGEMENT

- Success of stapedotomy cannot be predicted pre-operatively
- Previous stapedotomy has no impact on cochlear implant results

3 CLINICAL SITUATIONS

Hearing aid is the only option due to surgical contra indication

The two options are needed due to restaure binaural hearing

The two options are **possible**

BOTH OPTIONS ARE POSSIBLE

The American Journal of Otology - 19:541-543 © 1988

Editorial: Is Stapedotomy Ever Ethical?

Matthew L. Howard

- Risks due to surgery:
 - Information content to the patient
- No risk with hearing aid for a similar result ?
 - Do we have to propose hearing aid in first intention?
- Economic data: Health cost support

Hearing aid

Quality of sound

DO THE AUDIOLOGICAL RESULTS ARE COMPARABLE?

Inclusion criteria

 Patient candidat for surgery with a conductive hearing loss > 30 dB and normal contralateral ear. First two months HA and then surgery

Study design

 Prospective longitudinale study comparing audiological outcomes with hearing aid then stapedotomy at 2 months on 30 patients

Evaluation

Preliminary results

- Main criteria : → Improvement from 0 → 100 (GHSI)
- Secondary criteria : → Hearing threshold
 - → Sound localisation

PRELIMINARY RESULTS

Significant improvement of quality of live after surgery

SOUND LOCALISATION

Significant improvement of quality of sound localization

BINAURAL HEARING / MATRIX

CONCLUSION

- High resolution CT-Scan may be useful in the diagnosis of otosclerosis when the clinical symptoms are not indicative enough
- Imaging CT may also help in counseling patients with anatomical difficulties and extensive otosclerosis

Thank you for your attention